Noções básicas de negociação algorítmica: conceitos e exemplos Um algoritmo é um conjunto específico de instruções claramente definidas, destinadas a realizar uma tarefa ou processo. A negociação algorítmica (negociação automatizada, negociação em caixa preta ou simplesmente algo-trading) é o processo de usar computadores programados para seguir um conjunto definido de instruções para colocar um comércio para gerar lucros a uma velocidade e freqüência impossíveis para um Comerciante humano. Os conjuntos definidos de regras são baseados em tempo, preço, quantidade ou qualquer modelo matemático. Além das oportunidades de lucro para o comerciante, o algo-trading torna os mercados mais líquidos e torna a negociação mais sistemática descartando impactos emocionais humanos nas atividades comerciais. Suponha que um comerciante siga esses critérios de comércio simples: Compre 50 ações de uma ação quando sua média móvel de 50 dias exceda a média móvel de 200 dias. Vende ações da ação quando sua média móvel de 50 dias está abaixo da média móvel de 200 dias Usando este conjunto de duas instruções simples, é fácil escrever um programa de computador que monitorará automaticamente o preço das ações (e os indicadores de média móvel) e colocará as ordens de compra e venda quando as condições definidas forem atendidas. O comerciante não precisa mais manter um relógio para preços e gráficos ao vivo, ou colocar as ordens manualmente. O sistema de comércio algorítmico automaticamente faz isso para ele, identificando corretamente a oportunidade comercial. (Para obter mais informações sobre as médias móveis, veja: Médias móveis simples, faça as tendências se destacarem.) A Algo-trading oferece os seguintes benefícios: Negociações executadas com os melhores preços. Posicionamento instantâneo e preciso da ordem comercial (com altas chances de execução nos níveis desejados) Operações Cronometrado corretamente e instantaneamente, para evitar mudanças de preços significativas Custos de transação reduzidos (veja o exemplo de falta de implementação abaixo) Verificações automatizadas simultâneas em múltiplas condições de mercado Redução do risco de erros manuais na colocação dos negócios Backtest o algoritmo, com base nos dados históricos e em tempo real disponíveis Reduzida Possibilidade de erros por parte dos comerciantes humanos com base em fatores emocionais e psicológicos. A maior parte do dia-a-dia é a negociação de alta freqüência (HFT), que tenta capitalizar a colocação de um grande número de pedidos em velocidades muito rápidas em vários mercados e decisões múltiplas Parâmetros, com base em instruções pré-programadas. (Para mais informações sobre negociação de alta frequência, consulte: Estratégias e Segredos de Empresas de Negociação de Alta Frequência (HFT)) A Algo-trading é utilizada em muitas formas de atividades de negociação e investimento, incluindo: investidores de médio a longo prazo ou empresas de compra (fundos de pensão , Fundos de investimento, companhias de seguros) que compram em ações em grandes quantidades, mas não querem influenciar os preços das ações com investimentos discretos e em grande volume. Os comerciantes de curto prazo e os participantes do lado da venda (fabricantes de mercado, especuladores e arbitragistas) também se beneficiam da execução automatizada do comércio e ajudam a criar liquidez suficiente para os vendedores no mercado. Os comerciantes sistemáticos (seguidores de tendências, comerciantes de pares, hedge funds, etc.) acham muito mais eficiente programar suas regras de negociação e permitir que o programa seja comercializado automaticamente. O comércio algorítmico proporciona uma abordagem mais sistemática ao comércio ativo do que os métodos baseados em intuição ou instinto de comerciantes humanos. Estratégias de negociação algorítmica Qualquer estratégia para negociação algorítmica exige uma oportunidade identificada que seja rentável em termos de melhoria de ganhos ou redução de custos. As seguintes são estratégias de negociação comuns usadas em algo-trading: as estratégias de negociação algorítmicas mais comuns seguem as tendências nas médias móveis. Fugas de canal. Movimentos de níveis de preços e indicadores técnicos relacionados. Estas são as estratégias mais fáceis e simples de implementar através de negociação algorítmica porque essas estratégias não envolvem fazer previsões ou previsões de preços. As negociações são iniciadas com base na ocorrência de tendências desejáveis. Que são fáceis e direitas de implementar através de algoritmos sem entrar na complexidade da análise preditiva. O exemplo acima mencionado de média móvel de 50 e 200 dias é uma tendência popular seguindo a estratégia. (Para mais informações sobre as estratégias de negociação de tendências, veja: Estratégias simples para capitalizar as tendências.) Comprar uma ação dupla cotada a um preço mais baixo em um mercado e simultaneamente vendê-lo a um preço mais alto em outro mercado oferece o diferencial de preço como lucro livre de risco Ou arbitragem. A mesma operação pode ser replicada para ações versus instrumentos de futuros, pois os diferenciais de preços existem de tempos em tempos. Implementar um algoritmo para identificar esses diferenciais de preços e colocar as ordens permite oportunidades lucrativas de forma eficiente. Os fundos do índice definiram períodos de reequilíbrio para que suas participações fossem compatíveis com seus respectivos índices de referência. Isso cria oportunidades rentáveis para comerciantes algorítmicos, que capitalizam os negócios esperados que oferecem lucros de 20 a 80 pontos base, dependendo do número de ações no fundo do índice, apenas antes do reequilíbrio do fundo do índice. Essas negociações são iniciadas através de sistemas de negociação algorítmica para execução atempada e melhores preços. Muitos modelos matemáticos comprovados, como a estratégia de negociação neutra dota, que permitem a negociação em combinação de opções e sua segurança subjacente. Onde os negócios são colocados para compensar deltas positivos e negativos para que o portfólio delta seja mantido em zero. A estratégia de reversão média baseia-se na idéia de que os preços altos e baixos de um bem são um fenômeno temporário que retorna periodicamente ao seu valor médio. Identificar e definir uma faixa de preço e implementar algoritmos com base em isso permite que os negócios sejam colocados automaticamente quando o preço do recurso entra e sai do seu alcance definido. A estratégia de preços médios ponderados por volume quebra uma grande ordem e libera dinamicamente determinados pedaços menores da ordem para o mercado usando perfis de volume histórico específicos de estoque. O objetivo é executar a ordem próxima ao preço médio ponderado por volume (VWAP), beneficiando assim o preço médio. A estratégia de preço médio ponderado no tempo quebra uma grande ordem e libera dinamicamente determinados pedaços menores da ordem para o mercado usando intervalos de tempo uniformemente divididos entre uma hora de início e fim. O objetivo é executar a ordem perto do preço médio entre os horários de início e término, minimizando assim o impacto no mercado. Até que a ordem comercial seja totalmente preenchida, esse algoritmo continua enviando ordens parciais, de acordo com o índice de participação definido e de acordo com o volume negociado nos mercados. A estratégia de etapas relacionadas envia ordens a uma porcentagem definida pelo usuário de volumes do mercado e aumenta ou diminui essa taxa de participação quando o preço da ação atinge os níveis definidos pelo usuário. A estratégia de falta de implementação visa minimizar o custo de execução de uma ordem através da negociação do mercado em tempo real, economizando assim o custo da ordem e beneficiando do custo de oportunidade da execução atrasada. A estratégia aumentará a taxa de participação direcionada quando o preço das ações se mover de forma favorável e diminuí-lo quando o preço das ações se mover de forma adversa. Existem algumas classes especiais de algoritmos que tentam identificar acontecimentos do outro lado. Esses algoritmos de sniffing, usados, por exemplo, por um fabricante de mercado de venda têm a inteligência interna para identificar a existência de qualquer algoritmo no lado da compra de uma grande ordem. Essa detecção através de algoritmos ajudará o fabricante de mercado a identificar grandes oportunidades de ordem e permitir que ele se beneficie ao preencher as ordens a um preço mais elevado. Isso às vezes é identificado como front-running de alta tecnologia. (Para obter mais informações sobre negociação de alta freqüência e práticas fraudulentas, consulte: Se você comprar ações on-line, você está envolvido em HFTs.) Requisitos técnicos para negociação algorítmica Implementar o algoritmo usando um programa de computador é a última parte, batida com backtesting. O desafio é transformar a estratégia identificada em um processo informatizado integrado que tenha acesso a uma conta de negociação para fazer pedidos. São necessários os seguintes conhecimentos: conhecimento de programação de computador para programar a estratégia de negociação necessária, programadores contratados ou software de negociação pré-fabricado. Conectividade de rede e acesso a plataformas de negociação para colocar os pedidos. Acesso a feeds de dados de mercado que serão monitorados pelo algoritmo para oportunidades de colocação Ordens A capacidade e a infra-estrutura para testar o sistema uma vez construído, antes de entrar em operação em mercados reais Dados históricos disponíveis para backtesting, dependendo da complexidade das regras implementadas no algoritmo. Aqui está um exemplo abrangente: o Royal Dutch Shell (RDS) está listado em Amsterdã Stock Exchange (AEX) e London Stock Exchange (LSE). Vamos criar um algoritmo para identificar oportunidades de arbitragem. Aqui estão algumas observações interessantes: as negociações da AEX em euros, enquanto a LSE é negociada em libras esterlinas. Por causa da diferença horária de uma hora, a AEX abre uma hora antes da LSE, seguido de ambas as trocas comerciais simultaneamente durante as próximas horas e depois da negociação somente na LSE durante A última hora com o fechamento da AEX Podemos explorar a possibilidade de negociação de arbitragem nas ações do Royal Dutch Shell listadas nesses dois mercados em duas moedas diferentes. Um programa de computador que pode ler os preços atuais do mercado. Os preços dos feeds da LSE e AEX A forex para Taxa de câmbio GBP-EUR Capacidade de colocação de pedidos que pode rotear a ordem para a troca correta. Capacidade de teste de back-up em feeds de preços históricos. O programa de computador deve executar o seguinte: Leia o preço de entrada do estoque RDS de ambas as bolsas Usando as taxas de câmbio disponíveis . Converte o preço de uma moeda para outra. Se houver uma discrepância de preços suficientemente grande (descontando os custos de corretagem), levando a uma oportunidade rentável, então coloque o pedido de compra em troca de preços mais baixos e venda em câmbio com preços mais altos Se as ordens forem executadas como Desejado, o lucro da arbitragem seguirá Simples e Fácil No entanto, a prática de negociação algorítmica não é tão simples de manter e executar. Lembre-se, se você pode colocar um comércio gerado por algo, os outros participantes do mercado podem também. Conseqüentemente, os preços flutuam em milissegundos e até mesmo em microssegundos. No exemplo acima, o que acontece se o seu comércio de compras for executado, mas vender o comércio não, à medida que os preços de venda mudam quando o seu pedido atingir o mercado Você vai acabar sentado com uma posição aberta. Tornando sua estratégia de arbitragem inútil. Existem riscos e desafios adicionais: por exemplo, riscos de falha do sistema, erros de conectividade de rede, atrasos de tempo entre ordens comerciais e execução e, o mais importante, algoritmos imperfeitos. O algoritmo mais complexo, o backtesting mais rigoroso é necessário antes de ser posto em ação. A análise quantitativa de um algoritmo de desempenho desempenha um papel importante e deve ser examinada criticamente. É emocionante ir pela automação auxiliada por computadores com a noção de ganhar dinheiro sem esforço. Mas é preciso certificar-se de que o sistema está completamente testado e os limites exigidos são definidos. Os comerciantes analíticos devem considerar aprender programação e construir sistemas por conta própria, ter confiança em implementar as estratégias certas de forma infalível. O uso cauteloso eo teste completo de algo-trading podem criar oportunidades rentáveis. Como identificar estratégias de negociação algorítmicas Neste artigo, eu quero apresentar-lhe os métodos pelos quais eu próprio identifico estratégias de negociação algorítmicas rentáveis. Nosso objetivo hoje é entender detalhadamente como encontrar, avaliar e selecionar esses sistemas. Vou explicar como a identificação de estratégias é tanto sobre preferências pessoais como sobre o desempenho da estratégia, como determinar o tipo e quantidade de dados históricos para o teste, como avaliar de forma imparcial uma estratégia de negociação e, finalmente, como proceder para a fase de teste e a implementação da estratégia. . Identificando suas próprias preferências pessoais para negociação Para ser um comerciante bem-sucedido - de forma discricionária ou algorítmica - é necessário fazer-se algumas perguntas honestas. O Trading fornece-lhe a capacidade de perder dinheiro a um ritmo alarmante, por isso é necessário conhecer-se tanto quanto for necessário entender a estratégia escolhida. Eu diria que a consideração mais importante na negociação é estar ciente de sua própria personalidade. O comércio e o comércio algorítmico em particular, requer um grau significativo de disciplina, paciência e distanciamento emocional. Uma vez que você está deixando um algoritmo executar sua negociação para você, é necessário ser resolvido para não interferir com a estratégia quando está sendo executado. Isso pode ser extremamente difícil, especialmente em períodos de redução prolongada. No entanto, muitas estratégias que mostraram ser altamente rentáveis em um backtest podem ser arruinadas por uma simples interferência. Compreenda que, se você deseja entrar no mundo da negociação algorítmica, você será testado emocionalmente e, para ser bem sucedido, é necessário trabalhar com essas dificuldades. A próxima consideração é uma vez. Você trabalha em tempo integral Você trabalha em meio período Você trabalha em casa ou tem uma longa jornada diária? Essas perguntas ajudarão a determinar a freqüência da estratégia que você deve procurar. Para aqueles que trabalham em tempo integral, uma estratégia de futuros intradía pode não ser apropriada (pelo menos até que seja totalmente automatizada). Suas restrições de tempo também ditarão a metodologia da estratégia. Se sua estratégia é freqüentemente negociada e dependente de feeds de notícias caras (como um terminal da Bloomberg), você terá claramente que ser realista sobre a sua capacidade de executar com sucesso enquanto estiver no escritório Para aqueles com você com muito tempo, ou as habilidades Para automatizar sua estratégia, você pode querer examinar uma estratégia mais técnica de negociação de alta freqüência (HFT). Minha opinião é que é necessário realizar pesquisas contínuas sobre suas estratégias de negociação para manter um portfólio consistentemente lucrativo. Poucas estratégias permanecem sob o radar para sempre. Assim, uma parcela significativa do tempo atribuído à negociação será na realização de pesquisas em andamento. Pergunte a si mesmo se você está preparado para fazer isso, pois pode ser a diferença entre uma forte rentabilidade ou um declínio lento em relação a perdas. Você também precisa considerar seu capital de negociação. O valor mínimo ideal geralmente aceito para uma estratégia quantitativa é de 50,000 USD (aproximadamente 35,000 para nós no Reino Unido). Se eu estivesse começando novamente, eu começaria com um montante maior, provavelmente mais perto de 100.000 USD (aproximadamente 70.000). Isso ocorre porque os custos de transação podem ser extremamente caros para estratégias de média a alta freqüência e é necessário ter capital suficiente para absorvê-los em tempos de redução. Se você está considerando começar com menos de 10.000 USD, então você precisará se restringir a estratégias de baixa freqüência, negociando em um ou dois ativos, já que os custos de transação irão comer rapidamente em seus retornos. Interactive Brokers, que é um dos corretores mais amigáveis para aqueles com habilidades de programação, devido à sua API, tem uma conta de varejo mínima de 10.000 USD. A habilidade de programação é um fator importante na criação de uma estratégia de negociação algorítmica automatizada. Estar bem informado em uma linguagem de programação como C, Java, C, Python ou R permitirá que você crie o sistema de armazenamento de dados, back-test e execução de ponta a ponta você mesmo. Isso tem uma série de vantagens, cujo chefe é a capacidade de estar completamente atento a todos os aspectos da infra-estrutura comercial. Também permite que você explore as estratégias de maior freqüência, pois você terá o controle total da sua pilha de tecnologia. Embora isso signifique que você possa testar seu próprio software e eliminar erros, também significa mais tempo gasto na codificação de infra-estrutura e menos na implementação de estratégias, pelo menos na parte anterior da sua carreira de trading. Você pode achar que você está confortável negociando no Excel ou MATLAB e pode terceirizar o desenvolvimento de outros componentes. Eu não recomendaria isso no entanto, especialmente para aqueles que negociavam em alta freqüência. Você precisa se perguntar o que você espera alcançar por meio de negociação algorítmica. Você está interessado em um rendimento regular, pelo qual você deseja obter lucros da sua conta de negociação Ou você está interessado em um ganho de capital a longo prazo e pode se negociar sem a necessidade de retirar recursos. A dependência da renda determinará a freqüência de sua estratégia . As retiradas de renda mais regulares exigirão uma estratégia de negociação de maior freqüência com menor volatilidade (ou seja, uma proporção Sharpe mais alta). Os comerciantes de longo prazo podem pagar uma frequência comercial mais tranquila. Finalmente, não se ilude com a noção de tornar-se extremamente rico em um curto espaço de tempo. A negociação de Algo não é um esquema rápido e rico, se alguma coisa pode ser um esquema rápido e rápido. É preciso disciplina, pesquisa, diligência e paciência importantes para serem bem-sucedidos no comércio algorítmico. Pode levar meses, senão anos, gerar rentabilidade consistente. Sourcing Algorithmic Trading Ideas Apesar das percepções comuns ao contrário, é realmente bastante direto para localizar estratégias comerciais rentáveis no domínio público. Nunca as idéias comerciais estão mais disponíveis do que hoje. Revistas de finanças acadêmicas, servidores de pré-impressão, blogs comerciais, fóruns de negociação, revistas comerciais semanais e textos especializados fornecem milhares de estratégias de negociação com as quais basear suas idéias. Nosso objetivo como pesquisadores quantitativos de negócios é estabelecer um pipeline estratégico que nos forneça um fluxo de idéias comerciais em andamento. Idealmente, queremos criar uma abordagem metódica para sourcing, avaliação e implementação de estratégias que encontramos. Os objetivos do pipeline são gerar uma quantidade consistente de novas idéias e fornecer-nos uma estrutura para rejeitar a maioria dessas idéias com o mínimo de consideração emocional. Devemos ser extremamente cuidadosos para não permitir influências cognitivas na nossa metodologia de tomada de decisão. Isso poderia ser tão simples como ter uma preferência por uma classe de ativos sobre outra (o ouro e outros metais preciosos vêm à mente) porque são percebidos como mais exóticos. Nosso objetivo sempre deve ser encontrar estratégias consistentemente lucrativas, com expectativas positivas. A escolha da classe de ativos deve basear-se em outras considerações, como restrições de capital de negociação, taxas de corretagem e capacidades de alavancagem. Se você não está completamente familiarizado com o conceito de estratégia comercial, então o primeiro lugar a olhar é com os livros didáticos estabelecidos. Os textos clássicos fornecem uma ampla gama de idéias mais simples e diretas, para se familiarizarem com a negociação quantitativa. Aqui está uma seleção que eu recomendo para aqueles que são novos para o comércio quantitativo, que gradualmente se tornam mais sofisticados conforme você trabalha através da lista: Para uma lista mais longa de livros de negociação quantitativos, visite a lista de leitura QuantStart. O próximo local para encontrar estratégias mais sofisticadas é com fóruns comerciais e blogs comerciais. No entanto, uma nota de cautela: muitos blogs comerciais dependem do conceito de análise técnica. A análise técnica envolve a utilização de indicadores básicos e psicologia comportamental para determinar tendências ou padrões de reversão nos preços dos ativos. Apesar de ser extremamente popular no espaço comercial geral, a análise técnica é considerada um pouco ineficaz na comunidade de finanças quantitativas. Alguns sugeriram que não é melhor do que ler um horóscopo ou estudar folhas de chá em termos de seu poder preditivo. Na realidade, há indivíduos bem sucedidos que fazem uso da análise técnica. No entanto, como quants com uma caixa de ferramentas matemática e estatística mais sofisticada à nossa disposição, podemos avaliar facilmente a eficácia de tais estratégias baseadas em TA e tomar decisões baseadas em dados, em vez de basear nossa em considerações emocionais ou preconceitos. Aqui está uma lista de blogs e fóruns de negociação algorítmica bem respeitados: uma vez que você teve alguma experiência na avaliação de estratégias mais simples, é hora de analisar as ofertas acadêmicas mais sofisticadas. Algumas revistas acadêmicas serão de difícil acesso, sem inscrições elevadas ou custos pontuais. Se você é um membro ou ex-aluno de uma universidade, você poderá obter acesso a algumas dessas revistas financeiras. Caso contrário, você pode olhar para servidores de pré-impressão. Que são repositórios de internet de rascunhos finais de documentos acadêmicos que estão sendo submetidos a revisão pelos pares. Uma vez que estamos apenas interessados em estratégias que possamos replicar com sucesso, backtest e obter rentabilidade, uma revisão pelos pares é de menor importância para nós. A principal desvantagem das estratégias acadêmicas é que muitas vezes podem estar desatualizadas, exigir dados históricos obscuros e dispendiosos, negociar em classes de ativos ilíquidas ou não influenciar taxas, derrapagens ou spread. Também não é claro se a estratégia de negociação deve ser realizada com ordens de mercado, ordens limitadas ou se contém perdas de parada, etc. Portanto, é absolutamente essencial replicar a estratégia o melhor que puder, fazer uma prova e fazer uma transação realista Custos que incluem tantos aspectos das classes de ativos que você deseja negociar. Aqui está uma lista dos servidores de pré-impressão mais populares e jornais financeiros dos quais você pode gerar idéias: o que é sobre a formação de suas próprias estratégias quantitativas. Mas não está limitado a) experiência em uma ou mais das seguintes categorias: Microestrutura de mercado - Para estratégias de maior freqüência em particular, pode-se usar a microestrutura do mercado. Isto é, compreensão da dinâmica do livro de pedidos para gerar rentabilidade. Diferentes mercados terão várias limitações tecnológicas, regulamentos, participantes do mercado e restrições que estão abertas à exploração através de estratégias específicas. Esta é uma área muito sofisticada e os profissionais de varejo terão dificuldade em ser competitivos neste espaço, particularmente porque a competição inclui fundos de hedge quantitativos grandes e bem capitalizados com fortes capacidades tecnológicas. Estrutura do fundo - Os fundos de investimento em conjunto, como fundos de pensão, parcerias de investimentos privados (hedge funds), consultores de negociação de commodities e fundos de investimento, são limitados por uma regulamentação pesada e suas grandes reservas de capital. Assim, certos comportamentos consistentes podem ser explorados com aqueles que são mais ágeis. Por exemplo, grandes fundos estão sujeitos a restrições de capacidade devido ao tamanho deles. Assim, se eles precisam rapidamente descarregar (vender) uma quantidade de valores mobiliários, eles terão que escaloná-lo para evitar mover o mercado. Algoritmos sofisticados podem tirar proveito disso, e outras idiossincrasias, em um processo geral conhecido como arbitragem de estrutura de fundos. Aprendizagem mecânica de inteligência artificial - Os algoritmos de aprendizagem de máquinas tornaram-se mais prevalentes nos últimos anos nos mercados financeiros. Os classificadores (como Naive-Bayes, et al.) Correspondentes de função não-linear (redes neurais) e rotinas de otimização (algoritmos genéticos) foram todos usados para prever caminhos de ativos ou otimizar estratégias de negociação. Se você tem um histórico nesta área, você pode ter alguma visão sobre como determinados algoritmos podem ser aplicados a certos mercados. Há, é claro, muitas outras áreas para investigar quants. Bem, discuta como encontrar estratégias detalhadas em detalhes em um artigo posterior. Ao continuar monitorando essas fontes numa base semanal, ou mesmo diária, você está se preparando para receber uma lista consistente de estratégias de uma variedade diversificada de fontes. O próximo passo é determinar como rejeitar um grande subconjunto destas estratégias, a fim de minimizar o desperdício do seu tempo e os recursos de teste em estratégias que provavelmente não serão lucrativas. Avaliando Estratégias de Negociação A primeira e, possivelmente, a consideração mais óbvia é se você realmente entende a estratégia. Você poderia explicar a estratégia de forma concisa ou exigir uma série de advertências e listas de parâmetros intermináveis. Além disso, a estratégia tem uma base boa e sólida na realidade. Por exemplo, você poderia apontar alguma lógica comportamental ou restrição de estrutura de fundos que Pode estar causando o (s) padrão (s) que você está tentando explorar. Essa restrição suportaria uma mudança de regime, como uma ruptura dramática do ambiente regulatório. A estratégia depende de regras estatísticas ou matemáticas complexas Aplica-se a qualquer série de tempo financeiro ou é É específico para a classe de ativos que se afirma ser rentável. Você deve estar pensando constantemente nesses fatores ao avaliar novos métodos comerciais, caso contrário você pode desperdiçar uma quantidade significativa de tempo tentando fazer backtest e otimizar estratégias não lucrativas. Uma vez que você tenha determinado que você entende os princípios básicos da estratégia, você precisa decidir se ele se encaixa com o seu perfil de personalidade acima mencionado. Esta não é uma consideração tão vaga quanto parece. As estratégias diferirão substancialmente em suas características de desempenho. Existem certos tipos de personalidade que podem lidar com períodos mais significativos de redução ou estão dispostos a aceitar um maior risco de retorno maior. Apesar do fato de que nós, como quants, tentamos eliminar todo o viés cognitivo possível e devemos avaliar uma estratégia de forma desapaixonada, os preconceitos sempre fluirão. Portanto, precisamos de um meio consistente e sem emoção para avaliar o desempenho das estratégias . Aqui está a lista de critérios que eu julgo uma nova estratégia potencial por: Metodologia - É o impulso da estratégia, o retorno médio, o mercado neutro, direcional. A estratégia depende de técnicas de aprendizado estatístico ou de máquinas sofisticadas (ou complexas) que são difíceis Para entender e exigir um doutorado em estatística para entender. Essas técnicas introduzem uma quantidade significativa de parâmetros, o que pode levar a um viés de otimização. A estratégia provavelmente suportará uma mudança de regime (ou seja, uma nova regulamentação potencial de mercados financeiros). Razão de Sharpe - A relação de Sharpe Caracteriza heuristicamente a proporção de risco de risco da estratégia. Quantifica quanto retorno você consegue para o nível de volatilidade suportado pela curva patrimonial. Naturalmente, precisamos determinar o período e a frequência em que esses retornos e volatilidade (ou seja, o desvio padrão) são medidos. Uma estratégia de freqüência mais alta exigirá maior taxa de amostragem do desvio padrão, mas um período de tempo geral mais curto, por exemplo. Alavancagem - A estratégia exige alavancagem significativa para ser lucrativa. A estratégia requer o uso de contratos de derivativos alavancados (futuros, opções, swaps) para fazer um retorno. Estes contratos alavancados podem ter uma forte volatilidade e, portanto, podem facilmente levar a Chamadas de margem. Você tem o capital de negociação e o temperamento dessa volatilidade Frequência - A freqüência da estratégia está intimamente ligada à sua pilha de tecnologia (e, portanto, experiência tecnológica), ao índice Sharpe e ao nível geral dos custos de transação. Todas as outras questões consideradas, estratégias de maior freqüência requerem mais capital, são mais sofisticadas e mais difíceis de implementar. No entanto, assumindo que seu mecanismo de teste de backtest é sofisticado e livre de erros, eles geralmente terão taxas de Sharpe muito maiores. Volatilidade - A volatilidade está fortemente relacionada ao risco da estratégia. A relação Sharpe caracteriza isso. A maior volatilidade das classes de ativos subjacentes, se não coberta, muitas vezes leva a uma maior volatilidade na curva de patrimônio e, portanto, menores índices de Sharpe. Naturalmente, suponho que a volatilidade positiva seja aproximadamente igual à volatilidade negativa. Algumas estratégias podem ter maior volatilidade negativa. Você precisa estar ciente desses atributos. WinLoss, Average ProfitLoss - As estratégias serão diferentes nas suas características de ganhos e ganhos de lucro. Pode-se ter uma estratégia muito lucrativa, mesmo que o número de negociações perdidas exceda o número de negócios vencedores. As estratégias de impulso tendem a ter esse padrão, pois dependem de um pequeno número de grandes sucessos para serem lucrativos. As estratégias de reversão média tendem a ter perfis opostos em que mais dos negócios são vencedores, mas os negócios perdidos podem ser bastante graves. Drawdown máximo - A redução máxima é a maior queda percentual global na curva de equidade da estratégia. As estratégias de Momentum são bem conhecidas por sofrerem períodos de alongamento prolongado (devido a uma série de muitas operações perdidas incrementais). Muitos comerciantes vão desistir em períodos de redução prolongada, mesmo que os testes históricos sugeriram que este é um negócio como de costume para a estratégia. Você precisará determinar qual porcentagem de redução (e em que período de tempo) você pode aceitar antes de deixar de negociar sua estratégia. Esta é uma decisão altamente pessoal e, portanto, deve ser considerada com cuidado. CapacityLiquidity - No nível de varejo, a menos que você esteja negociando em um instrumento altamente ilíquido (como um estoque de pequena capitalização), você não terá que se preocupar muito com a capacidade da estratégia. A capacidade determina a escalabilidade da estratégia para aumentar o capital. Muitos dos maiores hedge funds sofrem de importantes problemas de capacidade à medida que suas estratégias aumentam em alocação de capital. Parâmetros - Certas estratégias (especialmente aquelas encontradas na comunidade de aprendizagem de máquinas) exigem uma grande quantidade de parâmetros. Todo parâmetro adicional que uma estratégia requer deixa mais vulnerável ao viés de otimização (também conhecido como ajuste de curva). Você deve tentar e alvejar estratégias com o menor número possível de parâmetros ou garantir que você tenha quantidades suficientes de dados para testar suas estratégias. Benchmark - Quase todas as estratégias (a menos que caracterizadas como retorno absoluto) são medidas em relação a um benchmark de desempenho. O benchmark geralmente é um índice que caracteriza uma grande amostra da classe de ativos subjacentes em que a estratégia negocia. Se a estratégia negociar ações americanas de grande capitalização, o SP500 seria um benchmark natural para medir a sua estratégia. Você ouvirá os termos alfa e beta, aplicado a estratégias deste tipo. Vamos discutir estes coeficientes em profundidade em artigos posteriores. Observe que não discutimos os retornos reais da estratégia. Por que isso é isolado, os retornos realmente nos fornecem informações limitadas sobre a eficácia da estratégia. Eles não lhe dão uma visão de alavancagem, volatilidade, benchmarks ou requisitos de capital. Assim, as estratégias raramente são avaliadas apenas em seus retornos. Considere sempre os atributos de risco de uma estratégia antes de analisar os retornos. Nesta fase, muitas das estratégias encontradas no seu pipeline serão rejeitadas, uma vez que não atendem aos requisitos de capital, alavancam restrições, tolerâncias máximas de tolerância ou preferências de volatilidade. As estratégias que permanecem podem agora ser consideradas para testes anteriores. However, before this is possible, it is necessary to consider one final rejection criteria - that of available historical data on which to test these strategies. Obtaining Historical Data Nowadays, the breadth of the technical requirements across asset classes for historical data storage is substantial. In order to remain competitive, both the buy-side (funds) and sell-side (investment banks) invest heavily in their technical infrastructure. It is imperative to consider its importance. In particular, we are interested in timeliness, accuracy and storage requirements. I will now outline the basics of obtaining historical data and how to store it. Unfortunately this is a very deep and technical topic, so I wont be able to say everything in this article. However, I will be writing a lot more about this in the future as my prior industry experience in the financial industry was chiefly concerned with financial data acquisition, storage and access. In the previous section we had set up a strategy pipeline that allowed us to reject certain strategies based on our own personal rejection criteria. In this section we will filter more strategies based on our own preferences for obtaining historical data. The chief considerations (especially at retail practitioner level) are the costs of the data, the storage requirements and your level of technical expertise. We also need to discuss the different types of available data and the different considerations that each type of data will impose on us. Lets begin by discussing the types of data available and the key issues we will need to think about: Fundamental Data - This includes data about macroeconomic trends, such as interest rates, inflation figures, corporate actions (dividends, stock-splits), SEC filings, corporate accounts, earnings figures, crop reports, meteorological data etc. This data is often used to value companies or other assets on a fundamental basis, i. e. via some means of expected future cash flows. It does not include stock price series. Some fundamental data is freely available from government websites. Other long-term historical fundamental data can be extremely expensive. Storage requirements are often not particularly large, unless thousands of companies are being studied at once. News Data - News data is often qualitative in nature. It consists of articles, blog posts, microblog posts (tweets) and editorial. Machine learning techniques such as classifiers are often used to interpret sentiment . This data is also often freely available or cheap, via subscription to media outlets. The newer NoSQL document storage databases are designed to store this type of unstructured, qualitative data. Asset Price Data - This is the traditional data domain of the quant. It consists of time series of asset prices. Equities (stocks), fixed income products (bonds), commodities and foreign exchange prices all sit within this class. Daily historical data is often straightforward to obtain for the simpler asset classes, such as equities. However, once accuracy and cleanliness are included and statistical biases removed, the data can become expensive. In addition, time series data often possesses significant storage requirements especially when intraday data is considered. Financial Instruments - Equities, bonds, futures and the more exotic derivative options have very different characteristics and parameters. Thus there is no one size fits all database structure that can accommodate them. Significant care must be given to the design and implementation of database structures for various financial instruments. We will discuss the situation at length when we come to build a securities master database in future articles. Frequency - The higher the frequency of the data, the greater the costs and storage requirements. For low-frequency strategies, daily data is often sufficient. For high frequency strategies, it might be necessary to obtain tick-level data and even historical copies of particular trading exchange order book data. Implementing a storage engine for this type of data is very technologically intensive and only suitable for those with a strong programmingtechnical background. Benchmarks - The strategies described above will often be compared to a benchmark . This usually manifests itself as an additional financial time series. For equities, this is often a national stock benchmark, such as the SP500 index (US) or FTSE100 (UK). For a fixed income fund, it is useful to compare against a basket of bonds or fixed income products. The risk-free rate (i. e. appropriate interest rate) is also another widely accepted benchmark. All asset class categories possess a favoured benchmark, so it will be necessary to research this based on your particular strategy, if you wish to gain interest in your strategy externally. Technology - The technology stacks behind a financial data storage centre are complex. This article can only scratch the surface about what is involved in building one. However, it does centre around a database engine, such as a Relational Database Management System (RDBMS), such as MySQL, SQL Server, Oracle or a Document Storage Engine (i. e. NoSQL). This is accessed via business logic application code that queries the database and provides access to external tools, such as MATLAB, R or Excel. Often this business logic is written in C, C, Java or Python. You will also need to host this data somewhere, either on your own personal computer, or remotely via internet servers. Products such as Amazon Web Services have made this simpler and cheaper in recent years, but it will still require significant technical expertise to achieve in a robust manner. As can be seen, once a strategy has been identified via the pipeline it will be necessary to evaluate the availability, costs, complexity and implementation details of a particular set of historical data. You may find it is necessary to reject a strategy based solely on historical data considerations. This is a big area and teams of PhDs work at large funds making sure pricing is accurate and timely. Do not underestimate the difficulties of creating a robust data centre for your backtesting purposes I do want to say, however, that many backtesting platforms can provide this data for you automatically - at a cost. Thus it will take much of the implementation pain away from you, and you can concentrate purely on strategy implementation and optimisation. Tools like TradeStation possess this capability. However, my personal view is to implement as much as possible internally and avoid outsourcing parts of the stack to software vendors. I prefer higher frequency strategies due to their more attractive Sharpe ratios, but they are often tightly coupled to the technology stack, where advanced optimisation is critical. Now that we have discussed the issues surrounding historical data it is time to begin implementing our strategies in a backtesting engine. This will be the subject of other articles, as it is an equally large area of discussionThe Pros And Cons Of Automated Trading Systems Traders and investors can turn precise entry. Saída e regras de gerenciamento de dinheiro em sistemas de negociação automatizados que permitem aos computadores executar e monitorar os negócios. Uma das maiores atrações da automação da estratégia é que pode tirar parte da emoção fora da negociação, uma vez que os negócios são automaticamente colocados assim que determinados critérios forem atendidos. Este artigo irá introduzir leitores e explicar algumas das vantagens e desvantagens, bem como as realidades, dos sistemas de negociação automatizados. (Para leitura relacionada, veja The Power Of Program Trades.) O que é um sistema de negociação automatizado Sistemas de negociação automatizados, também denominados sistemas de negociação mecânica, negociação algorítmica. Negociação automatizada ou negociação de sistema, permitem que os comerciantes estabeleçam regras específicas para ambas as entradas de comércio e as saídas que, uma vez programadas, podem ser executadas automaticamente através de um computador. The trade entry and exit rules can be based on simple conditions such as a moving average crossover. Ou podem ser estratégias complicadas que requerem uma compreensão abrangente da linguagem de programação específica para a plataforma de negociação de usuários, ou a experiência de um programador qualificado. Os sistemas de negociação automatizados geralmente exigem o uso de software que esteja vinculado a um corretor de acesso direto. E quaisquer regras específicas devem estar escritas na linguagem proprietária das plataformas. The TradeStation platform, for example, uses the EasyLanguage programming language the NinjaTrader platform, on the other hand, utilizes the NinjaScript programming language. A Figura 1 mostra um exemplo de uma estratégia automatizada que desencadeou três negociações durante uma sessão de negociação. (Para leitura relacionada, veja Comércio Global e Mercado Monetário.) Figura 1: Um gráfico de cinco minutos do contrato ES com uma estratégia automatizada aplicada. Algumas plataformas de negociação possuem assistentes de construção de estratégia que permitem aos usuários fazer seleções a partir de uma lista de indicadores técnicos comumente disponíveis para construir um conjunto de regras que podem ser negociadas automaticamente. O usuário poderia estabelecer, por exemplo, que um longo comércio será inserido uma vez que a média móvel de 50 dias cruza acima da média móvel de 200 dias em um gráfico de cinco minutos de um instrumento comercial específico. Users can also input the type of order (market or limit, for instance) and when the trade will be triggered (for example, at the close of the bar or open of the next bar), or use the platforms default inputs. Muitos comerciantes, no entanto, optam por programar seus próprios indicadores e estratégias customizados ou trabalham em estreita colaboração com um programador para desenvolver o sistema. Embora isso geralmente requer mais esforço do que usar o assistente de plataformas, ele permite um grau de flexibilidade muito maior e os resultados podem ser mais gratificantes. (Infelizmente, não existe uma estratégia de investimento perfeita que garanta o sucesso. Para mais informações, consulte Como usar os Indicadores Técnicos para Desenvolver Estratégias de Negociação.) Uma vez que as regras foram estabelecidas, o computador pode monitorar os mercados para encontrar oportunidades de compra ou venda com base na negociação Especificações de estratégia. Dependendo das regras específicas, assim que uma negociação é inserida, qualquer pedido de perdas de proteção de paradas. Paradas de trânsito e metas de lucro serão geradas automaticamente. Em mercados em movimento rápido, esta entrada de ordem instantânea pode significar a diferença entre uma pequena perda e uma perda catastrófica no caso de o comércio se mover contra o comerciante. Vantagens de sistemas de negociação automatizados Há uma longa lista de vantagens em ter um computador monitorando os mercados para oportunidades comerciais e executar os negócios, incluindo: Minimizar Emoções. Automated trading systems minimize emotions throughout the trading process. Ao manter as emoções sob controle, os comerciantes normalmente têm um tempo mais fácil de aderir ao plano. Uma vez que as ordens comerciais são executadas automaticamente uma vez que as regras comerciais foram cumpridas, os comerciantes não poderão hesitar ou questionar o comércio. Além de ajudar os comerciantes que tem medo de puxar o gatilho, o comércio automatizado pode conter aqueles que estão aptos a sobrecarregar a compra e venda em todas as oportunidades percebidas. Capacidade de Backtest. Backtesting applies trading rules to historical market data to determine the viability of the idea. Ao projetar um sistema de negociação automatizada, todas as regras precisam ser absolutas, sem espaço para interpretação (o computador não consegue adivinhar exatamente o que fazer). Traders can take these precise sets of rules and test them on historical data before risking money in live trading. O backtesting cuidadoso permite que os comerciantes avaliem e aperfeiçoem uma idéia de negociação e determinem a expectativa de sistemas do valor médio que um comerciante pode esperar para ganhar (ou perder) por unidade de risco. (Oferecemos algumas dicas sobre este processo que podem ajudar a refindar suas estratégias de negociação atuais. Para mais informações, consulte Backtesting: Interpreting the Past.) Preserve Discipline. Como as regras comerciais são estabelecidas e a execução comercial é executada automaticamente, a disciplina é preservada mesmo em mercados voláteis. A disciplina é muitas vezes perdida devido a fatores emocionais, como o medo de sofrer uma perda, ou o desejo de obter um pouco mais de lucro de um comércio. O comércio automatizado ajuda a garantir que a disciplina seja mantida porque o plano de negociação será seguido exatamente. Além disso, o erro piloto é minimizado e uma ordem para comprar 100 ações não será inserida incorretamente como uma ordem para vender 1.000 ações. Achieve Consistency. Um dos maiores desafios na negociação é planejar o comércio e negociar o plano. Mesmo que um plano de negociação tenha o potencial de ser rentável, os comerciantes que ignoram as regras estão alterando qualquer expectativa que o sistema teria tido. There is no such thing as a trading plan that wins 100 of the time losses are a part of the game. Mas as perdas podem ser psicologicamente traumatizantes, então um comerciante que tem duas ou três negociações perdidas em uma fila pode decidir ignorar o próximo comércio. Se esse próximo comércio fosse um vencedor, o comerciante já havia destruído qualquer expectativa do sistema. Automated trading systems allow traders to achieve consistency by trading the plan. (É impossível evitar o desastre sem regras de negociação. Para mais informações, veja 10 Passos para Construir um Plano de Negociação de Vencimento). Velocidade de Entrada de Pedido Melhorada. Since computers respond immediately to changing market conditions, automated systems are able to generate orders as soon as trade criteria are met. Entrar ou sair de um comércio alguns segundos antes pode fazer uma grande diferença no resultado dos negócios. Assim que uma posição é inserida, todos os outros pedidos são gerados automaticamente, incluindo perdas protetoras de parada e metas de lucro. Os mercados podem se mover rapidamente, e é desmoralizante ter um comércio atingindo o objetivo de lucro ou superar um nível de parada de perdas antes que os pedidos possam ser inseridos. Um sistema de negociação automatizado evita que isso aconteça. Diversificar a negociação. Os sistemas de negociação automatizados permitem ao usuário trocar várias contas ou várias estratégias ao mesmo tempo. Isso tem o potencial de espalhar o risco em vários instrumentos ao criar um hedge contra posições perdidas. O que seria incrivelmente desafiador para um humano realizar é eficientemente executado por um computador em questão de milissegundos. The computer is able to scan for trading opportunities across a range of markets, generate orders and monitor trades. Disadvantages and Realities of Automated Trading Systems Automated trading systems boast many advantages, but there are some downfalls of and realties to which traders should be aware. Mechanical failures. A teoria por trás do comércio automatizado faz com que pareça simples: configurar o software, programar as regras e assisti-lo comercializar. In reality, however, automated trading is a sophisticated method of trading, yet not infallible. Dependendo da plataforma de negociação, uma ordem comercial pode residir em um computador e não em um servidor. O que isso significa é que, se uma conexão com a Internet for perdida, um pedido pode não ser enviado ao mercado. Poderia haver também uma discrepância entre os negócios teóricos gerados pela estratégia e o componente da plataforma de entrada de pedidos que os transforma em trades reais. Most traders should expect a learning curve when using automated trading systems, and it is generally a good idea to start with small trade sizes while the process is refined. Monitoramento. Although it would be great to turn on the computer and leave for the day, automated trading systems do require monitoring. This is due do the potential for mechanical failures, such as connectivity issues, power losses or computer crashes, and to system quirks. É possível que um sistema de negociação automatizado experimente anomalias que possam resultar em ordens erradas, ordens faltantes ou pedidos duplicados. Se o sistema for monitorado, esses eventos podem ser identificados e resolvidos rapidamente. Sobre otimização. Embora não sejam específicos dos sistemas de negociação automatizados, os comerciantes que empregam técnicas de backtest podem criar sistemas que parecem ótimos no papel e que realizam terrivelmente em um mercado ao vivo. Over-optimization refers to excessive curve-fitting that produces a trading plan that is unreliable in live trading. It is possible, for example, to tweak a strategy to achieve exceptional results on the historical data on which it was tested. Os comerciantes às vezes incorretamente assumem que um plano de negociação deve ter cerca de 100 negócios lucrativos ou nunca deve ter uma redução para ser um plano viável. Como tal, os parâmetros podem ser ajustados para criar um plano quase perfeito que falha completamente assim que é aplicado a um mercado ao vivo. (Esta sobre otimização cria sistemas que ficam bons apenas em papel. Para mais informações, consulte Testes de retorno e avanço: a importância da correlação.) Os comerciantes de automação baseados no servidor têm a opção de executar seus sistemas de negociação automatizados através de uma negociação baseada no servidor Plataforma como Strategy Runner. Essas plataformas freqüentemente oferecem estratégias comerciais para venda, um assistente para que os comerciantes possam projetar seus próprios sistemas ou a capacidade de hospedar sistemas existentes na plataforma baseada no servidor. Por uma taxa, o sistema de negociação automatizado pode pesquisar, executar e monitorar negócios com todas as ordens que residem em seu servidor, resultando em entradas de pedidos potencialmente mais rápidas e confiáveis. Conclusão Embora seja um ppealing para uma variedade de fatores, os sistemas de negociação automatizada não devem ser considerados um substituto para o comércio cuidadosamente executado. Falhas mecânicas podem acontecer e, como tal, esses sistemas requerem monitoramento. Server-based platforms may provide a solution for traders wishing to minimize the risks of mechanical failures. (Para leitura relacionada, veja Day Trading Strategies For Beginners.)
Комментариев нет:
Отправить комментарий